A New Species of Ceratozamia (Zamiaceae) from Querétaro and Hidalgo, Mexico

Andrew P. Vovides
Instituto de Ecología, A.C., Apartado Postal 63, 91000 Xalapa, Veracruz, Mexico

Mario Vázquez Torres
Instituto de Investigaciones Biológicas, Apartado Postal 294, 91000 Xalapa, Veracruz, Mexico

Bart Schutzman
Department of Environmental Horticulture, University of Florida, Fifield Hall, Gainesville, Florida 32611-0670, U.S.A.

Carlos G. Iglesias
Instituto de Ecología, A.C., Apartado Postal 63, 91000 Xalapa, Veracruz, Mexico

ABSTRACT. A new species, Ceratozamia sabatoi, is described and illustrated. Its closest affinities are with C. kuesteriana from Tamaulipas, but it differs from that species in both cone and leaf morphology. The chromosome number of Ceratozamia sabatoi is 2n = 16, and the karyotype is similar to other species of the genus.

During botanical explorations and ecological impact studies in the area that will be affected by the Zimapán hydroelectric dam project, a small-trunked Ceratozamia was found in pine-oak forest by Ricardo Zirahuén, a biologist collaborating with the aforementioned project in the state of Querétaro. This taxon also appears in an adjacent population in mixed oak forest on the Hidalgo side of the border at a similar elevation.

Following further expeditions to both localities to procure live, vegetative, and fertile material to establish at the Jardín Botánico Clavijero (Botanic Garden of the Instituto de Ecología), it was concluded that this species is new to science. It is compared to Ceratozamia kuesteriana Regel, with which it is closely related, but differs in habit, leaf, female cone characteristics, and the light green color of emergent leaves.

Ceratozamia sabatoi Vovides, Vázquez Torres, Schutzman & Iglesias, sp. nov. TYPE: Mexico. Querétaro: 15 Apr. 1991, A. P. Vovides 1205 female (holotype, XAL). Figure 1.

Truncus globosus ad cymindricum, hypogaeus vel semi-hypogaeus, humulis ad 25 cm altus; cataphylla lanata, triangularia 4.55 cm longa, basi 2.5–3.5 cm lata; folia paucha, usque 6 pinnae, glabra; petiolus subteres vel cylindricus, 25–45 cm longus, parte infima dilatatus, validis spinis armatus; rachis semiteres in dimidio inferiore paucis spinae armata, supra fere inermis vel inermis, in cuspide 5–11 mm longem excurrente; foliola subopposita vel alterna, 15–35 juga, remota linearis, 12–25 longa, 1.2–2.4 cm lata, basi cuneata, apicem symetrica; cuspis oblonga, margin integerrima, 9–14 (x = 12)nervis; strobilus masculinus lineari-cylindricus 12–20 cm longus, 2–2.4 cm latus; pedunculus tomentosus 0.5–4.0 cm longus, 0.5–1 cm latus; strobilus femininus cylindricus 8–10 cm longus, 4–6 cm latus; pedunculus tomentosus 0.5–4.0 cm longus, 4–5.5 cm latus; semina 1.5 longa, 1.3 cm lata; 2n = 16.

Small palmlike plants; trunk partly subterranean, globose, readily producing offshoots, becoming cylindric with age up to 25 cm long, 17.5 cm diam. protected with persistent leaf bases, dark brown in color. Leaves 2–6, pinnae, spirally arranged forming an open crown, up to 80 cm long, 52 cm wide; petiole and rachis ascending to horizontal, armed with short stout prickles, 0.08–0.4 cm long (x = 0.15, n = 40), petiole tomentose at base. Leaflets 12–136 (x = 69, n = 33) leaves) lanceolate, narrowly obovate to subulate, glabrous, margin entire, subrevolute, apex pungent, base attenuate, dark to light green on adaxial surface, lighter green on abaxial, 9–29 cm long (x = 17, n = 47), 0.7–2.4 cm wide (x = 1.2, n = 47); articulation zone 0.2–0.5 cm wide (x = 0.35, n = 43), venation ± visible on adaxial surface, more prominent on abaxial, number of veins 9–14 (x = 12, n = 20), distance between veins 0.75–1.4 mm. Microstrobili green when immature becoming light to dark brown at dehiscence, 6.5–23 cm long (x = 15.8), 1.9–3 cm diam. (x = 2.3); peduncle tomentose, 1.5–11 cm long (x = 6.3), 0.5–1 cm diam. (x = 0.7, all measurements

n = 6); microsporophylls numerous, spirally arranged forming apparently vertical rows, cuneiform, bicorate at distal end, fertile portion covering ½–¾ of abaxial surface excluding horns and stalk, 0.9–1.4 cm long (x = 1.1), 0.4–0.7 cm wide (x = 0.6, n = 6); microsporangia numerous in sori of 2 to 3, dehiscence by longitudinal slit, 0.9–1.3 mm diam. (x = 1.1, n = 12). Megastrobili cylindrical to barrel-shaped slightly tapering toward apex, light blue-green when immature, turning green to light blue-brown at maturity, 6.0–12 cm long (x = 9.5), 3.4–5.6 cm diam. (x = 4.8); peduncle tormentose, 2.0–10 cm long (x = 5.4), 0.6–1.3 cm diam. (x = 0.8); megasporophylls numerous, spirally arranged forming apparently vertical rows, cuneiform-peltate, distal ends hexagonal, thickened, bicorate, with redish tomentum near horns, 1.7–2.6 cm long (x = 2.1), 1.1–2.8 cm wide (x = 1.7, all measurements n = 7). Seeds ovate variably angulate, sarcotesta creamy-white when immature becoming blue-green to light brown when mature, sclerotesta light beige, smooth, 8–10 visible ridges radiating from micropyle, 1.3–1.9 cm long (x = 1.5), 1.1–1.4 cm diam. (x = 1.3, n = 6). Chromosome number 2n = 16.

We assign the specific epithet in honor of the late Sergio Sabato, distinguished professor at the University of Naples, Italy, for his outstanding and prolific fieldwork and experimental biology on neotropical Zamiaceae.

The following key permits the separation of Ceratozamia sabatoi from C. kuesteriana and C. microstrobila.

Diagnostic Key

1a. Median leaflet width greater than 2.8 cm, persistent leaf bases light brown, tightly appressed to trunk C. microstrobila

1b. Median leaflet width less than 2.8 cm, persistent leaf bases dark brown, not appressed to trunk

2a. Petiole and rachis coppery in adult leaves; leaflets falcate to subfalcate, linear-lanceolate; veins 6–9; megastrobili reddish-brown to dark green, longer than 13 cm C. kuesteriana

2b. Petiole and rachis light to dark green in adult leaves; leaflets falcate to subfalcate, not linear-lanceolate; veins 9–14; megastrobili blue-green to blue-brown, less than 13 cm long C. sabatoi

CHROMOSOMAL STUDIES

The chromosome number and karyotype were determined from three established specimens held at the Jardín Botánico Fco. J. Clavijero under the accession numbers: 91-028, 91-040, 91-041 and vouchers deposited at (XAL). The root tip mitosis technique was used described by Vovides (1983) and chromosome classification based on centromere position that of Leyan et al. (1964) modified by Schlirbaum and Tsuchiya (1984). The diploid idrogram (Fig. 2) was constructed by taking the average arm lengths of the best three metaphase cells examined (Fig. 3). Arm lengths, total chromosome length, chromosome index (short arm divided by long arm), and symmetry index (length of longest pair divided by length of shortest pair) were computed using the average arm lengths from the three metaphase cells (Table 1). The karyotype shows 11 median region (m) chromosomes, 1 submedian (sm) chromosome, 1 subterminal region(s) chromosome, and 2 terminal point (T) chromosomes. Satellite number and position vary with cells observed and a maximum of 5 satellites were recorded, but not considered in the calculations.

HABITAT

The vegetation at the Querétaro locality is mainly pine-oak forest dominated by Pinus teocote Schlechtendal & Chamberlain, Quercus crassifolia Humboldt & Bonpland, Q. macrophylla Martius & Galeotti, Q. germana Chamberlain & Schlechtendal, and Q. xalapensis Humboldt & Bonpland on reddish clay (laterite) soils. The vegetation of the Hidalgo locality, a mixed oak forest, appears much richer due to higher rainfall. The dominant tree species are; Arbutus xalapensis Humboldt, Bonpland & Kunth, Buddleja cordata Humboldt, Bonpland & Kunth, Caryina ovata (Miller) K. Koch, Litsea glaucescens Humboldt, Bonpland & Kunth, Meliosma alba (Schlechtendal) Walpers, Persea sp., Prunus serotina Ehrenberg, Quercus germana Chamberlain & Schlechtendal, Q. sartorii Liebm., Q. polymorpha Schlechtendal & Chamberlain, and Q.
Figure 3. Chromosomes of Ceratozamia sabatoi at mitotic metaphase, bar = 2 μm.

xlalapensis Humboldt & Bonpland. The soil is a dark humus-rich clay on limestone.

DISCUSSION

Precise information on localities has been purposely omitted in order to discourage indiscriminate commercial collecting, which could lead to the extinction of this endangered species.

Even though some vegetative characteristics, especially the leaves, show on occasion morphological similarities between Ceratozamia kuesteriana and C. sabatoi, the consistent differences in cones, emergent leaves, seeds, and habitat lead us to consider the two taxa as separate species. Geographically speaking, several species are found in the areas between C. kuesteriana and C. sabatoi, including C. zaragozae Medellin, C. hidae Landry & Wilson, C. microstrobila Voides & Rees, and C. mexicana var. robusta (Miquel) Dyer, species whose populations are well delimited. Ceratozamia sabatoi occurs amongst low shrubs in oak forests and mixed oak-pine forests on volcanic soils in relatively dry habitats; C. kuesteriana, however, is found in much wetter cloud-forests on karst topography.

The chromosome count and karyotype are consistent with that reported for the genus (2n = 16) by Marchant (1968), Voides (1983; 1985) and Moretti (1990). The karyotype is nearly typical for the genus Ceratozamia (12m + 2sm + 2T), which appears to be stable. The sm and st chromosomes fall into these categories only by 0.03 and 0.01 μm respectively and, considering the considerable length of cycad chromosomes, these discrepancies are probably due to differential contraction at metaphase. The number and position of satellites varies between the species (Voides, 1983). Two satellites have been reported by Voides (1985) in C. kuesteriana and C. sabatoi has five.

Acknowledgments. We thank Ricardo Zirahuen, Christina Jocabeth P., and colleagues of the Comisión Federal de Electricidad (CFE) of the Zirapán Hydroelectric Project for permission, assistance, and use of helicopter in the field during the early exploration of the habitat. We thank CONACyT for partial funding of this investigation through project No. P020CCOR-904133. We also thank Edmundo Saavedra for the excellent botanical illustration of this species.

Literature Cited

Scharbaum, S. E. & T. Tsuchiya. 1984. The chromosomes of Cunninghamia konishi, C. lanceolata,
